X^2+y^2=1620

Simple and best practice solution for X^2+y^2=1620 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+y^2=1620 equation:



X^2+X^2=1620
We move all terms to the left:
X^2+X^2-(1620)=0
We add all the numbers together, and all the variables
2X^2-1620=0
a = 2; b = 0; c = -1620;
Δ = b2-4ac
Δ = 02-4·2·(-1620)
Δ = 12960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12960}=\sqrt{1296*10}=\sqrt{1296}*\sqrt{10}=36\sqrt{10}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{10}}{2*2}=\frac{0-36\sqrt{10}}{4} =-\frac{36\sqrt{10}}{4} =-9\sqrt{10} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{10}}{2*2}=\frac{0+36\sqrt{10}}{4} =\frac{36\sqrt{10}}{4} =9\sqrt{10} $

See similar equations:

| w-14.2=10.7 | | 4k+1-(2k+1)=8 | | 2/3(19x-12)=4 | | 12+x=6-2x | | 2x-10=12+4x-1x | | 2(3x-4)-(3x+2)=20 | | w+12.4=8.5 | | 3×a-4=(-10) | | 2+4(x+1)=18 | | 7-4x=9- | | -0.3333m+2=-1 | | 11n+28=-4(3-4n) | | 10/x*14/1=70 | | -7=1.2m-3.2m | | 2(y+5)=2y+5 | | 4-x-7=-1 | | 14y−5=4 | | 2-x+2=-6 | | 18-5y=6+4 | | N²+n-480=0 | | 10-2u=30 | | -6=1.5x-4.2x | | 3+4/5x=9/10x | | 2X+3+3x+7=5(x+2) | | 5x*7x=19 | | (10x-6)/2)=3x+1 | | 8/5a=13 | | x/5-6=11/8 | | (2w-8)=-4(2w+3) | | 3(u-4)-7=-7(-3u+3)-2u | | (10x-6)/2=3x+1 | | -5n+4(2-8n);n=-2 |

Equations solver categories